Generate Public Key From Private Osx

Posted By admin On 11.12.20

Dec 07, 2012  First thing that you need to do on your OSX machine is to create a directory that will store your SSH keys. Then you will generate a public and private key for your account, launch the Terminal and punch in some commands: Create the Keys. Get into your Home. Create a SSH directory name.ssh and move into it. Mkdir.ssh; cd.ssh. For example, you can create an SSH public/private key pair by using ssh-keygen. Similarly, you can create an RSA public/private key pair using the commands from this answer from the security forum. If, on the other hand, you're actually trying to create your own certificates, not just the public/private key pair, you can use Keychain Access to.

Several tools exist to generate SSH public/private key pairs. The following sections show how to generate an SSH key pair on UNIX, UNIX-like and Windows platforms.

Generating an SSH Key Pair on UNIX and UNIX-Like Platforms Using the ssh-keygen Utility

UNIX and UNIX-like platforms (including Solaris and Linux) include the ssh-keygen utility to generate SSH key pairs.

To generate an SSH key pair on UNIX and UNIX-like platforms using the ssh-keygen utility:
  1. Navigate to your home directory:
  2. Run the ssh-keygen utility, providing as filename your choice of file name for the private key:

    The ssh-keygen utility prompts you for a passphrase for the private key.

  3. Enter a passphrase for the private key, or press Enter to create a private key without a passphrase:

    Note:

    While a passphrase is not required, you should specify one as a security measure to protect the private key from unauthorized use. When you specify a passphrase, a user must enter the passphrase every time the private key is used.

    The ssh-keygen utility prompts you to enter the passphrase again.

  4. Enter the passphrase again, or press Enter again to continue creating a private key without a passphrase:
  5. The ssh-keygen utility displays a message indicating that the private key has been saved as filename and the public key has been saved as filename.pub. It also displays information about the key fingerprint and randomart image.

Generating an SSH Key Pair on Windows Using the PuTTYgen Program

The PuTTYgen program is part of PuTTY, an open source networking client for the Windows platform.

To generate an SSH key pair on Windows using the PuTTYgen program:
  1. Download and install PuTTY or PuTTYgen.

    To download PuTTY or PuTTYgen, go to http://www.putty.org/ and click the You can download PuTTY here link.

  2. Run the PuTTYgen program.
  3. Set the Type of key to generate option to SSH-2 RSA.
  4. In the Number of bits in a generated key box, enter 2048.
  5. Click Generate to generate a public/private key pair.

    As the key is being generated, move the mouse around the blank area as directed.

  6. (Optional) Enter a passphrase for the private key in the Key passphrase box and reenter it in the Confirm passphrase box.

    Note:

    While a passphrase is not required, you should specify one as a security measure to protect the private key from unauthorized use. When you specify a passphrase, a user must enter the passphrase every time the private key is used.

  7. Click Save private key to save the private key to a file. To adhere to file-naming conventions, you should give the private key file an extension of .ppk (PuTTY private key).

    Note:

    The .ppk file extension indicates that the private key is in PuTTY's proprietary format. You must use a key of this format when using PuTTY as your SSH client. It cannot be used with other SSH client tools. Refer to the PuTTY documentation to convert a private key in this format to a different format.
  8. Select all of the characters in the Public key for pasting into OpenSSH authorized_keys file box.

    Make sure you select all the characters, not just the ones you can see in the narrow window. /free-windows-7-activation-key-generator.html. If a scroll bar is next to the characters, you aren't seeing all the characters.

  9. Right-click somewhere in the selected text and select Copy from the menu.
  10. Open a text editor and paste the characters, just as you copied them. Start at the first character in the text editor, and do not insert any line breaks.
  11. Save the text file in the same folder where you saved the private key, using the .pub extension to indicate that the file contains a public key.
  12. If you or others are going to use an SSH client that requires the OpenSSH format for private keys (such as the ssh utility on Linux), export the private key:
    1. On the Conversions menu, choose Export OpenSSH key.
    2. Save the private key in OpenSSH format in the same folder where you saved the private key in .ppk format, using an extension such as .openssh to indicate the file's content.

This guide will demonstrate the steps required to encrypt and decrypt files using OpenSSL on Mac OS X. The working assumption is that by demonstrating how to encrypt a file with your own public key, you'll also be able to encrypt a file you plan to send to somebody else using their private key, though you may wish to use this approach to keep archived data safe from prying eyes.

Too Long, Didn't Read

Assuming you've already done the setup described later in this document, that id_rsa.pub.pcks8 is the public key you want to use, that id_rsa is the private key the recipient will use, and secret.txt is the data you want to transmit…

Encrypting

Decrypting

Using Passwords

OpenSSL makes it easy to encrypt/decrypt files using a passphrase. Unfortunately, pass phrases are usually 'terrible' and difficult to manage and distribute securely.

To Encrypt a File

You can add -base64 if you expect the context of the text may be subject to being 'visible' to people (e.g., you're printing the message on a pbulic forum). If you do, you'll need to add it to the decoding step as well. You can choose from several cypers but aes-256-cbc is reasonably fast, strong, and widely supported. Base64 will increase the size of the encrypted file by approximately 30%

To Decrypt a File

You will need to provide the same password used to encrypt the file. All that changes between the encrypt and decrypt phases is the input/output file and the addition of the -d flag. If you pass an incorrect password or cypher then an error will be displayed.

Encrypting Files Using your RSA keys

RSA encryption can only work with very short sections of data (e.g. an SHA1 hash of a file, or a password) and cannot be used to encrypt a large file. The solution is to generate a strong random password, use that password to encrypt the file with AES-256 in CBC mode (as above), then encrypt that password with a public RSA key. The encrypted password will only decrypt with a matching public key, and the encrypted file will require the unique password encrypted in the by the RSA key.

Replace OpenSSL

The copy of OpenSSL bundled with Mac OS X has several issues. Mac OS X 10.7 and earlier are not PCI compliant. It is best to replace it. See here for details: http://www.dctrwatson.com/2013/07/how-to-update-openssh-on-mac-os-x/

Generate Your Private/Public Key-pair

By default your private key will be stored in

  • ~/.ssh/id_rsa : This is your private key and it must be kept secret
  • ~/.ssh/id_rsa.pub : This is your public key, you can share it (for example) with servers as an authorized key for your account.You can change the location of where you store your keys, but this location is typical. Typically you want to ensure the private key is chmod 600, andd the public key is chmod 644.

Generate a PKCS8 Version of Your Public Key

The default format of id_rsa.pub isn't particularly friendly. If you are going to public your key (for example) on your website so that other people can verify the authorship of files attributed to you then you'll want to distribute it in another format. I find it useful to keep a copy in my .ssh folder so I don't have to re-generate it, but you can store it anywhere you like.

Generate a One-Time-Use Password to Encrypt the File

The passwords used to encrypt files should be reasonably long 32+ characters, random, and never used twice. To do this we'll generate a random password which we will use to encrypt the file.

This will generate 192 bytes of random data which we will use as a key. If you think a person may need to view the contents of the key (e.g., they're going to display it on a terminal or copy/paste it between computers) then you should consider base-64 encoding it, however:

  1. The password will become approximately 30% longer (and there is a limit to the length of data we can RSA-encrypt using your public key
  2. The password will be 'padded' with '=' characters if it's not a multiple of 4 bytes.

A Note on Long Passwords

There is a limit to the maximum length of a message that can be encrypted using RSA public key encryption. If you want to use very long keys then you'll have to split it into several short messages, encrypt them independently, and then concatinate them into a single long string. Decrypting the password will require reversing the technique: splitting the file into smaller chuncks, decrypting them independently, and then concatinating those into the original password key file.

Encrypt the File Using the Generated Key

Now that you have a good random password, you can use that to AES encrypt a file as seen in the 'with passwords' section

Decrypting the file works the same way as the 'with passwords' section, except you'll have to pass the key.

Generate Public Key From Private Osx Free

Encrypt the Key Used to Encrypt the File

We used fast symetric encryption with a very strong password to encrypt the file to avoid limitations in how we can use asymetric encryption. Finally, we'll use asymetric encryption to encrypt the password. This solves the problem of 'how do I safely transmit the password for the encrypted file' problem. You can encrypt is using the recipients public key and they can decode it using their private key. Encrypt the password using a public key:

The recipient can decode the password using a matching private key:

Package the Encrypted File and Key

There are a number of ways to do this step, but typically you'll want just a single file you can send to the recipent to make transfer less of a pain. I'd recommend just making a tarball and delivering it through normal methods (email, sftp, dropbox, whatever). Though a secure method of exchange is obviously preferable, if you have to make the data public it should still be resistent to attempts to recover the information.

Generate Public Key From Private Osx Download

The file can be extracted in the usual way:

Generate Public Key From Private Ssh

You may want to securely delete the unecrypted keyfile as the recipient will be able to decode it using their private key and you already have the unencrypted data.